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1 Basics

Definition 1. A Graph (G) is made of vertices (V ) and edges (E). We write G = (V,E).
Two vertices v1 and v2 are adjacent if they are connected by an edge. The degree of vertex v,

written d(v), is the number of edges of that vertex.

Remark 1. For this lecture, we are considering type of graph where:

1. The edges are undirected;

2. There can only be one edge between two vertices;

3. The edges are unweighted, i.e. “all edges are created the equal”.

Lemma 1. Let G be a graph with vertex set V = {v1, v2, ..., vn}. Then
∑n

k=1 d(vk) = 2|E|

Proof. Every edge belongs to two vertices, so when we add up
∑n

k=1 d(vk), we have counted each edge
twice.

More rigorously, we are counting number of pairs (v, e). By fixing v, we see this number is equal to∑n
k=1 d(vk). But by fixing e, we see this number is equal to 2|E|.

Here we have used the idea from counting in two ways.

Definition 2 (Clique). A complete graph on n vertices, denoted Kn, is the n-vertex graph with all
possible edges.

Exercise 1. Prove there are
(
n
2

)
edges in Kn.

Proof. There aren vertices and an edge between any choice of two vertices. So
(
n
2

)
edges.

Definition 3. A path is a finite sequence of vertices v0, v1, . . . , vn such that vi and vi+1 are adjacent.

Definition 4. A cycle is a walk v0, v1, . . . , vn such that v0 = vn.

Lemma 2. Let G be a graph such that all of its vertices have degree 2. Prove that G is a union of
pairwise disjoint cycles.

Proof. Pick a vertex v1, choose a neighbour and name is v2. Suppose we have constructed v1, v2, ..., vn,
which are all different vertices. Then vn+1 has exactly one neighbour which is not vn−1, let it be vn. If
vn = v1, terminate; If vn is one of v2, v3, ..., vn−2, contradiction. Otherwise continue. This process must
terminate, which gives us a cycle. If this cycle contains all the vertices, we are done. If not, pick another
vertex not in this cycle and continue.

2 Connected Graphs

Definition 5. A graph G is connected if given any two vertices v0 and v1 of G there is a walk that
starts in v0 and ends in v1. It is possible to decompose every graph into connected components.

Definition 6 (Tree). If G is a connected graph without cycles, then G is a tree.

Exercise 2. Every tree with n vertices has exactly n− 1 edges.
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Proof. We use induction. If n = 1, the assertion is clear. Suppose it is true for n and we want to prove
it for n+ 1. We want to show that there is a vertex of degree 1.

In order for the graph to be connected, each vertex has degree at least 1. Now, we consider the longest
possible path v0, v1, ...vk in the graph. If v1 only makes an edge with v2, we are done. Otherwise, we
either have a cycle, or contradict maximality.

Thus v1 must have degree 1, so we can delete this vertex to get a graph G′ with only n vertices. Now,
in order to use induction, we have to check that the new graph is also a tree.

G didn’t have a cycle to begin with, so removing a vertex doesn’t change that. G is connected, so if
we take two vertices u1 and u2 in G′, they are connected by path u1, w0, w1, . . . , wn, u2 in G. But none
of u1, w0, w1, . . . , wn, u2 can be v1, so G′ is also connected.

Here we used induction and the extremal principle, both very useful Olympiad techniques.
Extremal principle means look at the features which are the maximum or minimum. Then you can
get a contradiction by constructing something bigger or smaller.

3 Bipartite Graphs

Definition 7 (Bipartite Graph). A graph is bipartite if the vertex set V can be partitioned into two
sets X and Y such that all edges only goes from a vertex in X to a vertex in Y . In this case we write
G = (X,Y,E)

Theorem 1 (König 1936). A graph G is bipartite iff all of its cycles have even lengths.

Proof. First: we show that if G has a cycle of odd length, then it is not bipartite. Suppose that G has a
cycle of length 2n+ 1, and it was bipartite. That means the vertices of G can be divided into two parts,
which we label ‘left’ or ‘right’.

The vertices of the cycle could be split into the left part and the right part. One of the two parts
must have at least n+ 1 vertices.

However, among any n+ 1 vertices of the cycle, there are two consecutive ones, so there must be an
edge between either the left or the right part, contradicting the definition of bipartite graph.

Next, we suppose that G has no cycles of odd length. We show how to arrange the vertices into a
bipartite graph.

Without the loss of generality, we can assume that G is connected.
Let ‘left’, ‘right’ be two empty sets. Choose v0 and place it in ‘left’. Given any other vertex v1, take

a path that begins in v0 and ends in v1. If the walk has even length we place v1 in ‘left’, else in ‘right’.
Firstly this is a valid definition, because if there are two paths from v0 to v1, one odd and one even, we
have an odd cycle, contradiction.

Also, there can be no edges between vertices on the same side, because if so, we also get an odd
cycle.

Definition 8 (Matching in bipartite graphs). Suppose G = (X,Y,E) is a bipartite graph with compo-
nents X and Y , then a X-perfect matching is a subgraph G′ = (X,Y,E′)1 such that:

1. Every vertex v in X has exactly one edge in E′.

2. Suppose v1 and v2 are two distinct vertices in X with edges e1 and e2 in E′. Also suppose e1
connects v1 ∈ X with a vertex u1 ∈ Y , e2 connects v2 ∈ X with a vertex u2 ∈ Y . Then u1 ̸= u2.

In other words, there is an injective map from X to Y .

Definition 9. Given a subset V ′ of vertices of G, the neighbourhood of V ′ is defined to be the set
of vertices adjacent to at least one vertex of V ′ and is denoted N(V ′). Note that if G = (X,Y,E) is a
bipartite graph with components X, Y , and if V ′ ⊂ X, then N(V ′) ⊂ Y .

Theorem 2 (Hall’s Marriage Theorem). Let G = (X,Y,E) be a bipartite graph with components X and
Y . Then G has a X-perfect matching iff |S| ≤ |N(S)| for all S ⊂ X.

Remark 2. This makes intuitive sense, because if |S| > |N(S)| for some subset S then we have no hope
for finding a matching for S.

Exercise 3 (Kazakhstan 2003). We are given two square sheets of paper of area 2003. Each sheet is
divided into 2003 polygons of area 1 (the divisions may be different). One sheet is placed on top of the
other. Show that we can place 2003 pins such that each of the 4006 polygons is pierced.

1Here, a subgraph just means that E′ ⊂ E.
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Proof. Let G = (X,Y,E) be a bipartite graph, where X represent the first square paper, Y represent
the second square. Let X, Y each have 2003 vertices, representing the 2003 polygons. We draw an edge
between a u ∈ X and v ∈ Y if the corresponding polygons overlap.

Then take S ⊂ X. The polygons in S cover an area of exactly |S|. N(S) are all the polygons that
overlaps with some polygon(s) in S, in other words, N(S) covers all of S completely. Then we must have
|N(S)| ≥ |S|.

Thus by Hall’s marriage theorem, we can find a matching, and we put a pin in every pair of polygons
that are connected by this matching.

4 Thinking algorithmically

Graph theory shows up in all sort of real life applications, and are espcially important in computer
science.

Let’s consider a weighted graph, which means a graph G = (V,E), where each edge is labeled with a
value.

This can be used to model, for example, a road map between a set V of cities. Each edge e = (u, v)
represent a road between cities u and v, and the value of that edge is the length of that road.

4.1 Krusgal’s Algorithm

Now suppose that a hurricane Helene destroyed all of the roads. You need to repair some of these roads,
but you want to get the job done as fast as possible. To do that, you want to find a subset of these roads
to repair, such that:

1. The cities is still connected: you can get from any city to any other by the roads you choose to
repair.

2. There are no cycles in this subset of roads.

3. The sum of the distances of these roads are the minimum.

Problem: Find the minimum weighted spanning tree with the shortest total length.
Intuition: To get the minimum possible, we probably want the shortest paths possible. So let’s try

to choose the shortest paths one by one. But the problem is in this way we might make a cycle. So
in each step we choose the shortest avaible road, unless a cycles forms. If so we move on to the next
smallest.

Krusgal’s Algorithm: First, Sort all the edges in ascending order of their weights. Next, forms
sets of the vertices in the graph, one for each vertex, initially containing just that vertex. The algorithm
proceeds as follows, until |V | − 1 edges has been added to the set of spanning tree edges:

1. The next shortest edge (not yet in spanning tree set) is examined. If two vertex end points of the
edge are in different sets, then the edge is added to the set of spanning tree edges. A new set is
formed from the union of two vertex sets, the two old sets are dropped.

2. If the two vertex endpoints of the edge are already in the same set, the edge is ignored. I.e. this
chooses the next smallest edge, unless doing so would form a cycle.

Here we have used the greedy algorithm. Applying greedy algorithm directly doesn’t always give
the global optimum, but it gives useful insight, and sometimes can be modified to find the global
optimum.

5 Hamilton Cycle: NP problem

Definition 10 (Hamiltonian Cycles). A Hamiltonian Cycles is a cycle that visits each vertex exactly
once.

Determining whether a graph has a Hamiltonian cycle is a classic NP-problem. The P vs NP
problem is one of the biggest unsolved problems of mathematics, and has lots of huge implications.
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6 Homework

1. Prove that every connected graph G has a tree T that uses all of its vertices. Such a tree is called
a spanning tree.

2. Prove that in any connected graph G with at least three vertices, there are two vertices such that
if we remove any or both of them, the graph remains connected.

3. Show that every tree (with at least two vertices) has at least two vertices of degree 1.

4. Suppose that a graph has at least as many edges as vertices. Show that it contains a cycle.

5. Show that a bipartite graph G with n vertices has at most n2

4 edges.

6. Let G = (X,Y ;E) be a bipartite graph (the vertices are partitioned into sets X and Y ) such that
d(x) ≥ d(y) for all x ∈ X and y ∈ Y . Then there is a complete matching from X to Y . (Hint: use
Hall’s marriage theorem)

7. Bonus: Prove that Krusgal’s algoeithm is optimal. Read about Dijkstra’s algorithm. Read about
the P vs NP problem.
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